Thursday, March 14, 2013

Basis


A classical computer has a memory made up of bits, where each bit represents either a one or a zero. A quantum computer maintains a sequence of qubits. A single qubit can represent a one, a zero, or, crucially, any quantum superposition of these two qubit states; moreover, a pair of qubits can be in any quantum superposition of 4 states, and three qubits in any superposition of 8. In general, a quantum computer with  qubits can be in an arbitrary superposition of up to  2^n  different states simultaneously (this compares to a normal computer that can only be in one of these  2^n  states at any one time). A quantum computer operates by setting the qubits in a controlled initial state that represents the problem at hand and by manipulating those qubits with a fixed sequence of quantum logic gates. The sequence of gates to be applied is called a quantum algorithm. The calculation ends with measurement of all the states, collapsing each qubit into one of the two pure states, so the outcome can be at most n classical bits of information.

An example of an implementation of qubits for a quantum computer could start with the use of particles with two spin states: "down" and "up" (typically written |{\downarrow}\rangle and |{\uparrow}\rangle, or |0{\rangle}and |1{\rangle}). But in fact any system possessing an observable quantity A which is conserved under time evolution and such that A has at least two discrete and sufficiently spaced consecutive eigenvalues, is a suitable candidate for implementing a qubit. This is true because any such system can be mapped onto an effective spin-1/2 system.

No comments:

Post a Comment